sexta-feira, 20 de setembro de 2013

Les Friction > 1

Florence and the Machine > 2

...

 "

Se houvessem apenas dois segundos...
Se o mundo em chamas os fizesse gritar...
Qual seria sua ultima ação?

Próximos ao fim, não existe futuro...

Se aos olhos de uma criança qualquer, as chamas consumissem o ar...
Se civilizações decaíssem ao pó...

O que seria o tempo? O que foi a vida?
Por que?
Quando?! Onde?! E depois?!
Por favor.

Paralelos a  morte desconhecemos as estrelas e mundos aqui presentes.

Se ao caminhar, um estranho pairar os olhos aos seus...

Corra além da sua realidade!
Feche os olhos e sinta!
Está em você a decisão...
Apodrecer como um demônio ou queimar como um anjo...

Basta morrer...
Seu corpo não suportará o esquecimento da física.

Na despedida do seu reflexo,
onde encontrará suas lagrimas... Pergunte a si mesmo...
O que você é?

terça-feira, 17 de setembro de 2013

Curiosidades > Berílio




O berílio (do grego βερυλλoς, berilo) é um elemento químico de símbolo Be , número atômico 4 (4 prótons e 4 elétrons) e massa atômica 9 u . É um elemento alcalino-terroso, bivalente, tóxico, de coloração cinza, duro, leve, quebradiço e sólido na temperatura ambiente. Pertence ao grupo (ou família) 2 (anteriormente chamada IIA)

É empregado para aumentar a resistência de ligas metálicas(especialmente a de cobre). É empregado para produzir diversos instrumentos (giroscópios), dispositivos (molas de relógios), e em reatores nucleares. Foi descoberto pelo francês Louis Nicolas Vauquelin em 1798 na forma de óxido no berilo e na esmeralda.

O berílio apresenta um dos pontos de fusão mais altos entre os metais leves. A maleabilidade é aproximadamente 33% maior que a do aço. Tem uma grande condutividade térmica, não é magnético e resiste ao ataque do ácido nítrico. É bastante permeável aos raios X e, como o rádio e o polônio, libera nêutrons quando é bombardeado com partículas alfa (na ordem de 30 nêutrons por milhão de partículas alfa). Nas condições normais de pressão e temperatura o berílio resiste à oxidação com o ar, ainda que a propriedade de limitar a oxidação do cristal deva-se provavelmente à formação de uma delgada capa de óxido.

Aplicações:

Produção da liga metálica cobre-berílio para uma grande variedade de aplicações.
Em diagnósticos com raios X usam-se delgadas lâminas de berílio para filtrar a radiação visível, bem como na litografia com raios-X para a reprodução de circuitos integrados.
Moderador de nêutrons em reatores nucleares.

Por sua rigidez, leveza e estabilidade dimensional, é empregado na construção de diversos dispositivos como giroscópios, equipamentos de informática, molas de relógio e instrumentais diversos.
O óxido de berílio é utilizado quando são necessários elevada condutividade térmica, propriedades mecânicas,pontos de fusão elevados e isolamento elétrico.

Até recentemente eram empregados compostos de berílio em tubos fluorescentes.
Em espelhos ultra-leves usados em telescópios espaciais, como por exemplo, no telescópio Espacial James Webb da NASA.

História,  abundancia, obtenção, propriedades e precauções:

O berílio (do grego "βερυλλoς" , berilo) ou glucínio (do grego "γλυκυς" "doce", devido ao sabor dos seus sais) foi descoberto pelo francês Louis Nicolas Vauquelin em 1797 na forma de óxido no berilo e na esmeralda. Friedrich Wöhler e A. A. Bussy, de forma independente, isolaram o metal em 1828 a partir da reação de potássio com o cloreto de berílio

O berílio é encontrado em cerca de 30 minerais diferentes, sendo os mais importantes berilo, bertrandita, crisoberilo e fenaquita, que são as principais fontes de obtenção do berílio. Atualmente a maioria do metal é obtido mediante a redução do fluoreto de berílio com magnésio ou pela eletrólise do tetrafluoreto de berílio e potássio. As formas preciosas do berílio são a água-marinha e a esmeralda.

Geograficamente, as maiores reservas estão nos Estados Unidos, que lideram a produção mundial de berílio , seguido da Rússia e China. Estima-se que as reservas mundiais estejam acima de 80.000 toneladas.

O Potencial de redução do berílio é muito maior do que dos demais elementos do grupo (ou família) 2 (anteriormente chamada 2A). Isso indica que o berílio é muito menos eletropositivo (menos metálico) que os outros elementos do grupo, e não reage com a água. Especula-se que ele reage com o vapor d'água para formar óxido BeO, ou se não reage com água nem mesmo nessas condições.

O berílio e seus sais são potencialmente cancerígenos. A "beriliose" crônica é uma afecção pulmonar causada pela exposição ao pó de berílio, sendo classificada como "doença de trabalho".

A utilização de compostos de berílio em lâmpadas fluorescentes foi interrompida em 1949. No entanto, a exposição profissional ocorre nas indústrias nuclear e aeroespacial, no refino do metal, na fusão das ligas metálicas de berílio, na fabricação de dispositivos eletrônicos e na manipulação de outros materiais que contêm o berílio.

O berílio e seus compostos devem ser manipulados com muito cuidado; precauções extremas devem ser tomadas nas atividades profissionais que manuseiam estes tipos de materiais. A inalação prolongada pode causar, além da beriliose, câncer de pulmão. No contato com a pele pode causar eczema e ulcerações e, a absorção pela ingestão é pequena mas já foram relatados casos de ulcerações no trato digestivo.

terça-feira, 20 de agosto de 2013

...

'...'

Lua cheia
cante para o mar
no fundo do seu gélido ser 
onde ocultas pelo tempo
rochas afugentam a fervente
origem da vida

Mãe das águas
permita-me escorrer sobre tua prospera terra

Pai guardião do vento
permita-me voar sobre suas chamas

Não me deixe decair
não sou um verme
sou especial para as estrelas
que queimam por mim

Mais do que um ruido
serpentes de luz manifestam minha dor

Em nome da criação, do conhecimento, da imortalidade e da prosperidade
Perdoem meus desejos impuros
Obrigado, obrigado, obrigado

A vida, aos prazeres do corpo e as virtudes da alma. 

Curiosidades > Gás Hélio


O hélio é um elemento químico de símbolo He e que possui massa atômica igual a 4u, apresentando número atômico 2 (2 prótons e 2 elétrons). À temperatura ambiente, o hélio encontra-se no estado gasoso. Apesar da sua configuração eletrônica ser 1s2, o hélio não figura na tabela periódica dos elementos junto com o hidrogênio no bloco s, está colocado no grupo 18 ( VIIIA ou 0 ) do bloco p, já que apresenta nível de energia completo, apresentando as propriedades de um gás nobre, ou seja, é inerte (não reage) como os demais elementos.
É um gás monoatômico, incolor e inodoro. O hélio tem o menor ponto de evaporação de todos os elementos químicos, e só pode ser solidificado sob pressões muito grandes. É o segundo elemento químico em abundância no universo, atrás do hidrogênio, mas na atmosfera terrestre encontram-se apenas traços, provenientes da desintegração de alguns elementos. Em alguns depósitos naturais de gás é encontrado em quantidade suficiente para a sua exploração; usado para o enchimento de balões e dirigíveis, como líquido refrigerante de materiais supercondutores criogênicos e como gás engarrafado utilizado em mergulhos de grande profundidade.
Nas Condições Normais de Temperatura e Pressão o hélio é um gás monoatômico, tornando-se líquido somente em condições extremas (de alta pressão e baixa temperatura).
Tem o ponto de solidificação mais baixo de todos os elementos químicos, sendo o único líquido que não pode solidificar-se baixando a temperatura, já que permanece no estado líquido no zero absoluto à pressão normal. De resto, sua temperatura crítica é de apenas 5,19 K. Os isótopos 3He e 4He são os únicos em que é possível, aumentando a pressão, reduzir o volume mais de 30%. O calor específico do gás hélio é muito elevado, de vapor muito denso, expandindo-se rapidamente quando é aquecido a temperatura ambiente.
O hélio sólido só existe a pressões da ordem de 100 MPa a 15 K (-248,15 °C). Aproximadamente a essa temperatura, o hélio sofre uma transformação cristalina, de estrutura cúbica a estrutura hexagonal compacta; em condições mais extremas, ocorre uma nova mudança, empacotando os átomos numa estrutura cúbica centrada. Todos estes empacotamentos tem energias e densidades semelhantes, debitando-se as mudanças à maneira como os átomos interagem.
O hélio é mais leve que o ar, isto é, a densidade do hélio é menor que a densidade do ar, diferenciando-se do hidrogênio por não ser inflamável, entretanto, apresenta poder ascensional 8% menor. Por este motivo, e por ser um gás inerte, é utilizado em dirigíveis e balões com fins recreativos, publicitários, reconhecimento de terrenos, filmagens aéreas e para investigações das condições atmosféricas. As maiores reservas de Hélio encontram-se nos Estados Unidos. Estas reservas são estratégicas e controladas pelo governo norte-americano. Não estão disponíveis para venda em grande quantidades.
Além das citadas o hélio tem outras aplicações, como:
  • A mistura hélio-oxigênio é usada para mergulhos a grande profundidade, já que é inerte e menos solúvel no sangue que o nitrogênio e se difunde 2,5 vezes mais depressa, reduzindo o tempo necessário para a descompressão, apesar de iniciar-se em maior profundidade elimina o risco de narcose por nitrogênio (embriaguez de profundidades).
  • A mistura hélio-oxigênio (Heliox)também é usada no tratamento de Asma Grave, Bronquiolite e Laringotraqueite em crianças e DPOC em adultos nas proporções 70% Helio e 30% Oxigênio ou 80% Helio e 20% Oxigênio. Devido a sua baixa densidade e alta viscosidade em comparação ao ar ambiente e oxigênio, o hélio promove uma alteração do fluxo turbulento em laminar nas vias aéreas inferiores, reduzindo o trabalho respiratório do paciente. Além disso, promove melhor transporte de drogas inalatórias usadas no tratamento dessas doenças.
  • Devido ao seu baixo ponto de liquefação e evaporação pode ser usado como refrigerante a temperaturas extremadamente baixas em imãs supercondutores e na investigação criogênica a temperaturas próximas do zero absoluto.
  • Em cromatografia de gases é usado como gás transportador inerte.
  • A atmosfera inerte de hélio é empregada na soldadura por arco e na fabricação de cristais de silício e germânio, assim como para pressurizar combustíveis líquidos de foguetes.
  • Em túneis de vento supersônicos.
  • Como agente refrigerante em reatores nucleares.
  • O hélio líquido encontra cada vez maior uso em aplicações médicas de imagem por ressonância magnética (RMI).
  • Em circuitos frigoríficos e ou tubulações em geral normalmente a uma pressão de 6 bar, se emprega como um gás para revelar micros vazamentos que possam ocorrer na montagem de um circuito ou tubulações em geral.
Com o auxilio de espectrômetro de massa, aproxima-se no pontos de solda ou conexões, revelando assim vazamentos de até a equivalência de 2 gramas/ano, assegurando uma vida util maior para os produtos a serem testados.
O hélio foi descoberto de forma independente pelo francês Pierre Janssen e pelo inglês Norman Lockyer, em 1868, ao analisarem o espectro da luz solar durante um eclipse solar ocorrido naquele ano, encontrando uma linha de emissão de um elemento desconhecido. Edward Frankland confirmou os resultados de Janssen e propôs o nome helium para o novo elemento, em honra ao deus grego do sol (Hélio) com o sufixo -ium, já que se esperava que o novo elemento fosse metálico.
Em 1895 Sir William Ramsay isolou o hélio, descobrindo que não era metálico, entretanto o nome original foi conservado. Os químicos suecos Abraham Langlet e Per Teodor Cleve conseguiram também, na mesma época, isolar o elemento.
Em 1907 Ernest Rutherford e Thomas Royds demonstraram que as partículas alfa são núcleos de hélio.
Em 1908 o físico holandês Heike Kamerlingh Onnes produziu hélio líquido esfriando o gás até 0,9 K, o que lhe rendeu o prêmio Nobel. Em 1926 seu discípulo Willem Hendrik Keesom conseguiu pela primeira vez solidificar o hélio.
O hélio é o segundo elemento mais abundante do universo, atrás apenas do hidrogênio, constituindo em torno de 20% da matéria das estrelas, em cujo processo de fusão nuclear desempenha um importante papel. A abundância do hélio não pode ser explicada pela formação das estrelas. Ainda que seja consistente com o modelo do Big bang, acredita-se que a maior parte do hélio existente se formou nos três primeiros minutos do universo.
Na atmosfera terrestre existe na ordem de 5 ppm e é encontrado também como produto de desintegração em diversos minerais radioativos de urânio e tório. Além disso, está presente em algumas águas minerais, em gases vulcânicos, principalmente nos vulcões de lama e em certas acumulações comerciais de gás natural e como nos Estados Unidos, Rússia, Argélia, Qatar, Canadá e China de onde provém a maioria do hélio comercial, associado ao gás metano. Devido a sua baixa densidade, o hélio é um importante gás que conduz hidrocarbonetos no processo de migração. Áreas sismogênicas podem apresentar emanações de hélio e radônio.
Pode-se sintetizar o hélio bombardeando núcleos de lítio ou boro com prótons a alta velocidade.
Dado que o hélio é um gás nobre, praticamente não participa de reações químicas, ainda que sob a influência de descargas elétricas ou bombardeado com elétrons forme compostos com o wolfrâmio.
O isótopo mais comum do hélio é o 4He, cujo núcleo está constituído por dois prótons e dois nêutrons. Sua excepcional estabilidade nuclear se deve ao fato de que tem um número mágico de núcleons, isto é , uma quantidade que se distribui em níveis completos (de modo análogo como se distribuem os elétrons nos orbitais). Numerosos núcleos pesados se desintegram emitindo um núcleo de 4He; este processo, que se denomina desintegração alfa - por isso o núcleo emitido se chama partícula alfa - é a origem da maioria do hélio terrestre.
O hélio tem um segundo isótopo, o 3He, além de outros mais pesados que são radioativos. O hélio-3 é praticamente inexistente na terra, dado que a desintegração alfa produz exclusivamente núcleos de hélio-4 e tanto estes como o hélio atmosférico escapam ao espaço em períodos geológicos relativamente curtos. O hélio-3 pode ocorrer associado com depósitos de hidrocarbonetos (gás natural, petróleo) cuja origem é oriunda do manto da terra.
Ambos isótopos foram produzidos durante o Big bang em quantidades significativas, e continuam sendo produzidos mediante a fusão do hidrogênio nas estrelas.
Hélio 3 é um isótopo de hélio pouco comum na Terra. Ele é muito abundante na Lua, devido aos ventos solares que acumularam hélio 3 por milhares de anos.
Hélio 4 é o isótopo mais encontrado na Terra, sendo o mais estável entre todos os isótopos de hélio.
hélio líquido (hélio-4) se encontra em duas formas distintas: hélio-4 I e hélio-4 II, entre os quais ocorre uma brusca transição a 2.1768 K (ponto lambda). O He-I, acima dessa temperatura é um líquido normal, porém o He-II abaixo dessa temperatura, não se parece a nenhuma outra substância, converte-se num superfluido cujas características incomuns se devem a efeitos quânticos, um dos primeiros casos que se tem observado em escala macroscópica.
O hélio-II tem uma viscosidade nula, fluindo com facilidade através de finíssimos capilares através dos quais o hélio-I não consegue fluir, e tem, além disso, uma condutibilidade térmica muito maior que qualquer outra substância.
Os estoques de gás hélio de 5 a 10 K devem ser armazenados como líquido devido ao grande incremento de pressão que se produz ao aquecer o gás a temperatura ambiente.
Quando aspirado, o hélio distorce a voz(343m/s). Deve-se tomar cuidado ao fazer isso, o gás hélio pode provocar sufocamento por supressão de oxigênio.

segunda-feira, 8 de julho de 2013

30 Seconds To Mars > 1

...

"Do vazio meu sacrifício emergiu por você..."

Dentre vidas estamos acorrentados
ao desespero da escuridão

Ansiando o coração quebrado 
lagrimas escorrerem distantes de um significado

Ansiando a liberdade sem caminho
desconhecendo o presente 
amando o futuro ainda que desconhecido

Corpo e tempo somados ao fim que de si faz despertar
a fera que devora o inocente a muito inexistente

talvez o incerto se torne o calor que ao som da vida 
vos faça entender o desejo pela dor.

terça-feira, 2 de julho de 2013

Curiosidades > Lítio


O lítio (grego lithos, pedra) é um elemento químico de símbolo Li, número atômico 3 e massa atômica 7 u, contendo na sua estrutura três prótons e três elétrons. Na tabela periódica dos elementos químicos, pertencente ao grupo (ou família) 1 (anteriormente chamado 1A), entre os elementos alcalinos.

Na sua forma pura, é um metal macio, de coloração branco-prateada, que se oxida rapidamente no ar ou na água. É um elemento sólido porém leve, sendo empregado especialmente na produção de ligas metálicas condutoras de calor, em baterias elétricas e, seus sais, no tratamento do transtorno bipolar.

É o metal mais leve, a sua densidade é apenas, aproximadamente, a metade do que a da água. Como os demais metais alcalinos é monovalente e bastante reativo. Por esse motivo não é encontrado livre na natureza. No teste da chama torna-se vermelho, porém se a combustão ocorrer violentamente a chama adquire uma coloração branca brilhante.

Devido ao seu elevado calor específico, o maior de todos os sólidos, é usado em aplicações de transferência de calor e, por causa do seu elevado potencial eletroquímico é usado como um ânodo adequado para as baterias elétricas. Além destes tem outros usos: 
Os sais de lítio, particularmente o carbonato de lítio (Li2 CO3) e o citrato de lítio são usados no tratamento da depressão bipolar, ainda que, ultimamente, se tenha estendido seu uso ao tratamento da depressão unipolar. 

O cloreto de lítio (LiCl) e o brometo de lítio (LiBr) possuem uma elevada higroscopicidade, por isso são excelentes secantes. O segundo é utilizado em bombas de calor de absorção, dentre outros compostos como o nitrato de lítio (LiNO3) . 

O estearato de lítio é um lubrificante geralmente aplicado em condições de alta temperatura. 
O hidreto de alumínio e lítio é um agente redutor empregado na síntese de compostos orgânicos. 
A base hidróxido de lítio (LiOH) é usada nas naves espaciais e submarinos para depurar o ar, extraindo o dióxido de carbono produzido pelos seus ocupantes. 

O lítio é um componente comum nas ligas metálicas de alumínio, cádmio, cobre e manganês, utilizados na construção aeronáutica, e está sendo empregado com êxito na fabricação de cerâmicas e lentes, como a do telescópio Refletor Hale de 5,0 metros de diâmetro de "Monte Palomar". 
Também tem aplicações nucleares.
  
Também é usado como poderoso analgésico em operações de risco. 

O lítio (do grego λιθoς, pedra) foi descoberto por Johan August Arfwedson em 1817. Arfwedson encontrou o novo elemento nos minerais espodumena e lepidolita provenientes de uma mina de petalita, LiAl( Si2O5 )2, minério descoberto em 1800 pelo brasileiro, naturalista e estadista, José Bonifácio de Andrada e Silva na ilha de Utö (Suécia). Em 1818 Christian G. Gmelin foi o primeiro a observar que os sais de lítio dão uma coloração roxa brilhante a uma chama. Ambos tentaram, sem êxito, isolar o elemento de seus sais, resultado finalmente obtido por W.T. Brande e Sir Humphry Davy efetuando a eletrólise do óxido de lítio.

O nome do elemento provém do fato de ter sido descoberto em um mineral, embora fosse encontrado mais tarde como os outros metais alcalinos, nas cinzas das plantas.

Em 1923 a empresa alemã "Metallgesellschaft AG" começou a produzir lítio através da eletrólise do cloreto de lítio fundido, que é o processo ainda usado.

É um metal escasso na crosta terrestre, encontrado disperso em certas rochas, porém nunca livre, dada a sua grande reatividade. É encontrado, também, em sais naturais, águas salgadas e águas minerais.

Desde a Segunda Guerra Mundial, a produção de lítio aumentou enormemente, sendo obtido de fontes de água mineral, águas salgadas e das rochas que o contêm, sempre por eletrólise do cloreto de lítio. Os principais minerais do qual é extraído são lepidolita, petalita, espodumena e ambligonita. Nos Estados Unidos é extraído de salinas existentes na Califórnia e Nevada, principalmente.

Os isótopos estáveis do lítio são dois, Li-6 e Li-7, sendo o segundo o mais abundante (92,5%). Foram identificado seis radioisótopos, sendo os mais estáveis o Li-8 com um período de semi-desintegração de 838 milissegundos e o Li-9 com 178,3 ms de meia-vida. Os demais isótopos radioativos possuem meias-vidas menores de 8,5 ms.

As massas atômicas dos isótopos do lítio variam entre 4,027 e 11,0348 u do Li-4 ao do Li-11 respectivamente. O modo de desintegração principal dos isótopos mais leves que o isótopo estável mais abundante ( Li-7 ) é a emissão protônica (com um caso de desintegração alfa) obtendo-se isótopos de hélio.

+

Enquanto que nos isótopos mais pesados o modo mais habitual é a desintegração beta (com algum caso de emissão neutrônica), resultando isótopos de berílio, também por captura de elétron, como no caso abaixo.



O Li-7 é um dos elementos primordiais, produzido por síntese nuclear após o big bang. Os isótopos de lítio dividem-se substancialmente numa grande variedade de processos naturais, incluindo a precipitação química na formação de minerais, processos metabólicos, e na substituição do magnésio e ferro em redes cristalinas de minerais argilosos em que o Li-6 é preferido ao Li-7.

Como os outros metais alcalinos, o lítio puro é altamente inflamável e ligeiramente explosivo quando exposto ao ar e, especialmente, à água. Além disso é corrosivo, requerendo o emprego de meios adequados de manipulação para evitar o contato com a pele. Deve-se armazená-lo num hidrocarboneto líquido inflamável como, por exemplo, a gasolina. O lítio é considerado ligeiramente tóxico.

Os sais de lítio têm aprovação para o tratamento de transtorno bipolar no Brasil e nos Estados Unidos. Inicialmente classificado como um anti-psicótico, o lítio (administrado em forma de carbonato de lítio) é hoje utilizado por seus efeitos reguladores de humor, anti-maníaco e, secundariamente, anti-depressivo (sua eficácia para a depressão unipolar, entretanto, ainda não foi bem estabelecida). Além disso, um estudo indica que doses baixas de lítio, tanto em vermes quanto em humanos, confere benefícios anti-envelhecimento.

Em níveis séricos mais elevados, os íons de lítio são considerados venenosos e requerem atenção clínica imediata. Entre os principais sintomas de contaminação por lítio, lista-se náusea, tontura, enjoos, diarreia e tremores nas mãos. Esses sintomas podem, entretanto, aparecer na faixa terapêutica para transtorno bipolar. Salienta-se, ainda, que a administração prolongada de lítio pode causar danos à tireoide e aos rins, exigindo monitoração periódica por meio de exames de sangue.

quinta-feira, 13 de junho de 2013

...

"☯"

Deitado sobre a areia
que unida ao vento
desfez rastros impuros

A história se passa em mundos distintos
presos ao tempo que não voltará

Ao calor do fim de tarde
suas lagrimas cederam em misericórdia 

Apenas uma vaga lembrança 
de como se é viver sem corpo
de como se é voar sem ter asas

A caricia do gélido mar
desperta-me mais uma vez

Para distante dos mundos 
ocultos nos olhos de quem os vê

quinta-feira, 23 de maio de 2013

Curiosidades > Hidrogênio


O hidrogênio é um elemento químico com número atômico 1, representado pelo símbolo H. Com uma massa atômica de aproximadamente 1,0 u, o hidrogênio é o elemento menos denso. Ele geralmente apresenta-se em sua forma molecular, formando o gás diatômico (H2) nas CNTP. Este gás é inflamável, incolor, inodoro, não-metálico e insolúvel em água.

O elemento hidrogênio, por possuir propriedades distintas, não se enquadra claramente em nenhum grupo da tabela periódica, sendo muitas vezes colocado no grupo 1 (ou família 1A) por possuir apenas 1 elétron na camada de valência (ou última camada).

O hidrogênio é o mais abundante dos elementos químicos, constituindo aproximadamente 75% da massa elementar do Universo. Estrelas na sequência principal são compostas primariamente de hidrogênio em seu estado de plasma. O Hidrogênio elementar é relativamente raro na Terra, e é industrialmente produzido a partir de hidrocarbonetos presentes no gás natural, tais como metano, após o qual a maior parte do hidrogênio elementar é usada "em cativeiro" (o que significa localmente no lugar de produção). Os maiores mercados do mundo usufruem do uso do hidrogênio para o aprimoramento de combustíveis fósseis (no processo de hidrocraqueamento) e na produção de amoníaco (maior parte para o mercado de fertilizantes). O hidrogênio também pode ser obtido por meio da eletrólise da água, porém, este processo é atualmente dispendioso, o que privilegia sua obtenção a partir do gás natural.

O isótopo do hidrogênio que possui maior ocorrência, conhecido como prótio, é formado por um único próton e nenhum nêutron. Em compostos iônicos pode ter uma carga positiva (se tornando um cátion) ou uma carga negativa (se tornando o ânion conhecido como hidreto). Também pode formar outros isótopos, como o deutério, com apenas um nêutron, e o trítio, com dois nêutrons. Em 2001, foi criado em laboratório o isótopo 4H e, a partir de 2003, foram sintetizados os isótopos 5H até 7H. O elemento hidrogênio forma compostos com a maioria dos elementos, está presente na água e na maior parte dos compostos orgânicos. Possui um papel particularmente importante na química ácido-base, na qual muitas reações envolvem a troca de prótons entre moléculas solúveis. Como o único átomo neutro pelo qual a Equação de Schrödinger pode ser resolvida analiticamente; o estudo energético e de ligações do átomo hidrogênio teve um papel principal no desenvolvimento da mecânica quântica.

A solubilidade e características do hidrogênio com vários metais são muito importantes na metalurgia (uma vez que muitos metais podem sofrer fragilidade em sua presença) e no desenvolvimento de maneiras seguras de estocá-lo para uso como combustível. É altamente solúvel em diversos compostos que possuem Terras-raras e metais de transição e pode ser dissolvido tanto em metais cristalinos e amorfos. A solubilidade do hidrogênio em metais é influenciada por distorções ou impurezas locais na estrutura cristalina do metal.

O gás hidrogênio, H2, foi o primeiro produzido artificialmente e formalmente descrito por T. Von Hohenheim (também conhecido como Paracelso, 1493–1541) por meio da reação química entre metais e ácidos fortes. Paracelso não tinha o conhecimento de que o gás inflamável produzido por esta reação química era constituído por um novo elemento químico. Em 1671, Robert Boyle redescobriu e descreveu a reação entre limalhas de ferro e ácidos diluídos, o que resulta na produção de gás hidrogênio. Em 1766, Henry Cavendish foi o primeiro a reconhecer o gás hidrogênio como uma discreta substância, ao identificar o gás de uma reação ácido-metal como "ar inflamável" e descobrindo mais profundamente, em 1781, que o gás produz água quando queimado. A ele geralmente é dado o crédito pela sua descoberta como um elemento químico. Em 1783, Antoine Lavoisier deu ao elemento o nome de hidrogênio , quando ele e Laplace reproduziram a descoberta de Cavendish, onde água é produzida quando hidrogênio é queimado.

Hidrogênio foi liquefeito pela primeira vez por James Dewar em 1898 ao usar resfriamento regenerativo e sua invenção se aproxima muito daquilo que conhecemos como garrafa térmica nos dias de hoje. Ele produziu hidrogênio sólido no ano seguinte. Odeutério foi descoberto em dezembro de 1931 por Harold Urey, e o trítio foi preparado em 1934 por Ernest Rutherford, Marcus Oliphant, e Paul Harteck. A água pesada, que possui deutério no lugar de hidrogênio regular na molécula de água, foi descoberta pela equipe de Urey em 1932.

François Isaac de Rivaz construiu o primeiro dispositivo de combustão interna movido por uma mistura de hidrogênio e oxigênio em 1806. Edward Daniel Clarke inventou o cano de sopro de gás hidrogênio em 1819. A lâmpada de Döbereiner e a Luminária Drummond foram inventadas em 1823.

O enchimento do primeiro balão com gás hidrogênio, foi documentado por Jacques Charles em 1783. O hidrogênio provia a subida para a primeira maneira confiável de viagem aérea seguindo a invenção do primeiro dirigível decolado com hidrogênio em 1852, por Henri Giffard. O conde alemão Ferdinand von Zeppelin promoveu a ideia de usar o hidrogênio em dirigíveis rígidos, que mais tarde foram chamados de Zeppelins; o primeiro dos quais teve seu voo inaugural em 1900. Voos programados regularmente começaram em 1910 e com o surgimento da Primeira Guerra Mundial em agosto de 1914, eles haviam transportado 35.000 passageiros sem qualquer incidente sério. Dirigíveis levantados por hidrogênio foram usados como plataformas de observação e bombardeadores durante a guerra.

O primeiro cruzamento transatlântico sem escalas foi realizado pelo dirigível britânico R34 em 1919. Com o lançamento do Graf Zeppelin nos anos 1920, o serviço regular de passageiros prosseguiu até meados dos anos 1930 sem nenhum acidente. Com a descoberta de reservas de um outro tipo de gás leve nos Estados Unidos esse projeto deveria sofrer modificações, já que o outro elemento prometia um aumento na segurança, mas o governo dos E.U.A. se recusou a vender o gás para este propósito. Sendo assim, H2 foi usado no dirigível Hindenburg, o qual foi destruído em um incidente em pleno voo sobre New Jersey no dia 6 de maio de 1937. O incidente foi transmitido ao vivo no rádio e filmado. A ignição do vazamento de hidrogênio foi atribuída como a causa do incidente, porém, investigações posteriores apontaram à ignição do revestimento de tecido aluminizado pela eletricidade estática.

Devido a sua estrutura atômica relativamente simples, consistindo somente de um próton e um elétron, o átomo de hidrogênio, junto com o espectro de luz produzido por ele ou absorvido por ele, foi de suma importância ao desenvolvimento da teoria da estrutura atômica. Além disso, a simplicidade correspondente da molécula de hidrogênio e o cátion correspondente H2+ permitiu um total entendimento da natureza da ligação química, que seguiu pouco depois do tratamento mecânico quântico do átomo de hidrogênio ter sido desenvolvimento na metade dos anos 1920.

Um dos primeiros efeitos quânticos a ser explicitamente notado (mas não entendido naquela época) foi a observação de Maxwell envolvendo hidrogênio, meio século antes da teoria da mecânica quântica completa aparecer. Maxwell observou que o calor específico de H2 inexplicavelmente se afasta daquele de um gás diatômico abaixo da temperatura ambiente e começa a parecer gradativamente com aquele de um gás monoatômico em temperaturas criogênicas. Segundo a teoria quântica, este comportamento surge do espaçamento dos níveis de energia rotativos (quantificados), os quais são particularmente bem espaçados em H2 por causa de sua reduzida massa. Estes níveis largamente espaçados inibem partições iguais da energia de calor em movimentos rotativos em hidrogênio sob baixas temperaturas. Gases diatômicos compostos de átomos mais pesados não possuem níveis tão largamente espaçados e não exibem o mesmo efeito.

Hidrogênio é o elemento mais abundante no universo, compondo 75% da matéria normal por massa e mais de 90% por número de átomos. Este elemento é encontrado em grande abundância em estrelas e planetas gigantes de gás. Nuvens moleculares de H2 são associadas a formação de estrelas. O elemento tem um papel vital em dar energia às estrelas através de cadeias próton-próton e do ciclo CNO de fusão nuclear.

Pelo universo, o hidrogênio é geralmente encontrado nos estados atômico e plasma, cujas propriedades são bem diferentes das do hidrogênio molecular. Como plasma, o elétron e o próton de hidrogênio não estão ligados, resultando em uma condutividade elétrica elevada e alta emissividade (produzindo a luz do Sol). As partículas carregadas são altamente influenciadas por campos elétricos e magnéticos. Por exemplo, no vento solar elas interagem com a magnetosfera da Terra, fazendo surgir as correntes de Birkeland e a aurora. Hidrogênio é encontrado em estado atômico neutro no meio interestelar. Acredita-se que a grande quantidade de hidrogênio neutro encontrado nos sistemas úmidos Lyman-alfa domina a densidade cosmológica bariônica do Universo até o desvio para o vermelho z=4.

Em Condições Normais de Temperatura e Pressão na Terra, o hidrogênio existe como um gás diatômico, H2 (para dados ver tabela). Entretanto, o gás de hidrogênio é muito raro na atmosfera da Terra (1 ppm volume) devido à sua pequena densidade, o que o possibilita escapar da gravidade da Terra mais facilmente que gases mais pesados. Entretanto, o hidrogênio (na forma combinada quimicamente) é o terceiro elemento mais abundante na superfície da Terra. A maior parte do hidrogênio da Terra está na forma de compostos químicos tais como hidrocarbonetos e água. O gás de hidrogênio é produzido por algumas bactérias e algas, e é um componente natural do flato. Metano é uma fonte de hidrogênio de crescente importância.

Gás hidrogênio (dihidrogênio) é altamente inflamável e queima em concentrações de 4% ou mais H2 no ar. A entalpia de combustão para o hidrogênio é −286 kJ/mol; ele queima de acordo com a seguinte equação balanceada.

2 H2(g) + O2(g) → 2 H2O(l) + 572 kJ (286 kJ/mol)

Quando misturado com oxigênio por entre uma grande variedade de proporções, o hidrogênio explode por ignição. Hidrogênio queima violentamente no ar, tendo ignição automaticamente na temperatura de 560 °C. Chamas de hidrogênio-oxigênio puros queimam no alcance de cor ultravioleta e são quase invisíveis a olho nu, como ilustrado pela faintness da chama das turbinas principais do ônibus espacial (ao contrário das chamas facilmente visíveis do foguete acelerador sólido). Então ele necessita de um detector de chama para detectar se um vazamento de hidrogênio está queimando. A explosão do dirigível Hindenburg foi um caso infame de combustão de hidrogênio; a causa é debatida, mas os materiais combustíveis na pele do dirigível foram responsáveis pela coloração das chamas. Outra característica dos fogos de hidrogênio é que as chamas tendem a ascender rapidamente com o gás no ar, como ilustrado pelas chamas do Hindenburg, causando menos dano que fogos de hidrocarboneto. Dois terços dos passageiros do Hindenburg sobreviveram ao incêndio, e muitas das mortes que ocorreram foram da queda ou da queima do combustível diesel.

H2 reage diretamente com outros elementos oxidantes. Uma reação violenta e espontânea pode ocorrer em temperatura ambiente com cloro e flúor, formando os haletos de hidrogênio correspondentes: Cloreto de hidrogênio e fluoreto de hidrogênio.

O nível de energia em estado fundamental do elétron de um átomo de hidrogênio é −13,6 eV, o que é equivalente a um fóton ultravioleta de aproximadamente 92 nm.

Os níveis de energia do hidrogênio podem ser calculados razoavelmente com precisão usando o modelo de Bohr para o átomo, o qual conceitualiza o elétron como "orbitando" o próton em analogia à órbita da Terra em relação ao Sol. Entretanto, a força eletromagnética atrai elétrons e prótons para cada um, enquanto planetas e objetos celestiais são atraídos uns aos outros pela gravidade. Por causa da discretização do momento angular postulado por Bohr no começo da mecânica quântica, o elétron no modelo de Bohr pode somente ocupar certas distâncias permitidas do próton, e portanto, somente certas energias permitidas.

Uma descrição mais precisa do átomo de hidrogênio parte de um tratamento puramente mecânico quântico que utiliza a equação de Schrödinger ou a equivalente integração funcional de Feynman para calcular a densidade de probabilidade do elétron perto do próton.

Existem duas moléculas diatômicas diferentes de isômeros spin de hidrogênio que diferem pelo spin relativo de seu núcleo. Na forma de orto-hidrogênio, os spins dos dois prótons são paralelos e formam um estado triplo; na forma de para-hidrogênio, os spins são antiparalelos e formam um singular. Nas condições normais de temperatura e pressão, o gás hidrogênio contém aproximadamente 25% da forma para- e 75% da forma orto-, também conhecido como a "forma normal". A taxa de equilíbrio de orto-hidrogênio para para-hidrogênio depende da temperatura, mas já que a forma orto- é um estado excitado e possui energia mais alta que a forma para-, é instável e não pode ser purificado. Em temperaturas muito baixas, o estado de equilíbrio é composto quase exclusivamente da forma para-. As propriedades físicas do para-hidrogênio puro diferem ligeiramente daquelas da forma normal. A distinção orto-/para- também ocorre em outros grupos funcionais ou moléculas que contêm hidrogênio, como água e metileno.

A interconversão não catalisada entre para- e orto- H2 aumenta com a temperatura crescente; portanto, H2 rapidamente condensado contém grandes quantidades da forma orto- de alta energia que convertem para a forma para- muito lentamente. A taxa orto-/para- no H2 condensado é uma consideração importante na preparação e armazenagem do hidrogênio líquido: a conversão de orto- para para- é exotérmica e produz calor suficiente para evaporar o hidrogênio líquido, levando a perda do material liquefeito. Catalisadores para a interconversão orto-/para-, como o óxido férrico, carbono ativado, asbesto platinizado, raros metais alcalinos-terrosos, compostos de urânio, óxido crômico, ou compostos de níquel, são usados durante o resfriamento de hidrogênio.

Uma forma molecular chamada hidrogênio protonado molecular, ou H3+, é encontrado no meio interestelar, onde ele é gerado pela ionização do hidrogênio molecular dos raios cósmicos. Também tem sido observado na atmosfera mais alta do planeta Júpiter. Esta molécula é relativamente estável no ambiente do espaço sideral devido a baixa temperatura e densidade. H3+ é um dos íons mais abundantes no Universo, e possui um papel notável na química do meio interestelar.

Apesar do hidrogênio, em sua forma gasosa (H2) não reagir muito nas CNTP, em sua forma atômica ele está combinado com a maioria dos elementos da Tabela Periódica, formando compostos com diferentes propriedades químicas e físicas. Ele pode formar compostos com elementos mais eletronegativos, tais como os do grupo 17 da Tabela Periódica (halogênios: (F, Cl, Br, I); nestes compostos, o hidrogênio é marcado por atrair para si uma carga parcial positiva. Quando unido a flúor, oxigênio, ou nitrogênio, o hidrogênio pode participar na forma de forte ligação não-covalente chamada ligação de hidrogênio, que é essencial à estabilidade de muitas moléculas biológicas. Hidrogênio também forma compostos com menos elementos eletronegativos, como metais e semimetais, nos quais gera uma carga parcial negativa. Estes compostos são geralmente conhecidos como hidretos.

Quando o hidrogênio se combina com o carbono, ele pode formar uma infinidade de compostos. Devido à marcante presença destes compostos nos organismos vivos, estes vieram a ser chamados decompostos orgânicos e considerados os principais elementos CHONPS (os seis elementos fundamentais para a vida na Terra); o ramo da química que estuda as propriedades destes compostos é conhecido como Química Orgânica e seu estudo no contexto de organismos vivos é conhecido como bioquímica. Por algumas definições, compostos "orgânicos" necessitam apenas da condição de conter carbono. Entretanto, a maior parte destes compostos também contém o hidrogênio e, uma vez que é a ligação carbono-hidrogênio que dá a esta classe de compostos suas características químicas particulares, isso faz com que algumas definições de "Química Orgânica" incluam a presença de ligações químicas entre carbono-hidrogênio.

Na Química Inorgânica, hidretos podem também servir como ligantes de ponte, responsáveis pelo elo entre dois centros metálicos em um composto de coordenação. Esta função é particularmente comum em elementos do grupo 13, especialmente em boranos (hidretos de boro) e complexos de alumínio, assim como em carboranos agrupados.

Na natureza conhece-se milhões de hidrocarbonetos mas eles não são formados pela reação direta do gás hidrogênio com o carbono (apesar da produção de gás de síntese segundo o processo de Fischer-Tropsch para criar hidrocarbonetos ter chegado próxima de ser uma exceção, uma vez que isto inicia-se com carvão e o hidrogênio elementar é gerado no local).

Compostos de hidrogênio são frequentemente chamados de hidretos, um termo que é usado bem livremente. Para químicos, o termo "hidreto" geralmente implica que o átomo H adquiriu um caráter negativo ou aniônico, denotados H−. A existência do ânion hidreto, sugerida por Gilbert N. Lewis em 1916 para hidretos similares ao sal nos grupos I e II, foi demonstrada por Moers em 1920 com a eletrólise de hidreto de lítio (LiH) derretido, que produziu uma quantidade de hidrogênio estequiométrica no ânodo. Para outros hidretos além dos metais de grupo I e II, o termo é bem enganoso, considerando a eletronegatividade de hidrogênio baixa. Uma exceção nos hidretos do grupo II é BeH2, o qual é polimérico. No hidreto de alumínio e lítio, o ânion AlH4− carrega centros hidreticos firmemente ligados ao Al (III). Ainda que hidretos podem ser formados com quase todos os elementos do grupo principal, o número e combinação de possíveis compostos varia vastamente; por exemplo, existem mais de 100 hidretos binários de borano conhecidos, mas somente um hidreto binário de alumínio. Hidreto binário de índio ainda não foi identificado, apesar de complexos mais largos existirem.

Oxidação de hidrogênio, a fim de remover seu elétron, formalmente gera H+, não contendo elétrons e um núcleo, que é geralmente composto de um próton. É por isso que H+ é frequentemente chamado de próton. Esta espécie é central à discussão de ácidos. Sob a teoria de Bronsted-Lowry, ácidos são doadores de prótons, enquanto bases são receptores de prótons.

Um próton H+ puro não pode existir em solução devido a sua forte tendência de se ligar a átomos ou moléculas com elétrons. Entretanto, o termo 'próton' é usado livremente para se referir ao hidrogênio de carga positiva ou catiônico, denotado H+.

Para evitar a ficção conveniente do "próton em solução" nu, soluções ácidas aquáticas são às vezes consideradas a conter o íon hidrônio (H3O+), que é organizado em grupos para formar H9O4+. Outros íons oxônio são encontrados quando a água está em solução com outros solventes.

Ainda que exóticos na terra, um dos íons mais comuns no universo é o íon H3+, conhecido como hidrogênio protonado molecular ou cátion tri-hidrogênio.

O isótopo mais comum do hidrogênio não possui nêutrons, existindo outros dois, o deutério (D) com um e o trítio (T), radioativo com dois. O deutério tem uma abundância natural compreendida entre 0,0184 e 0,0082% (IUPAC). O hidrogênio é o único elemento químico que tem nomes e símbolos químicos distintos para seus diferentes isótopos.

O hidrogênio possuiu ainda outros isótopos altamente instáveis (do 4H ao 7H) e que foram sintetizados em laboratório, mas nunca observados na natureza. 
¹H, conhecido como prótio, é o isótopo mais comum do hidrogênio com uma abundância de mais de 99,98%. Devido a que o núcleo deste isótopo é formado por um só próton ele foi baptizado como prótio, nome que apesar de ser muito descritivo, é pouco usado. 

²H, o outro isótopo estável do hidrogênio, é conhecido como deutério e o seu núcleo contém um próton e um nêutron. O deutério representa 0,0026% ou 0,0184% (segundo seja em fracção molar ou fracção atômica do hidrogênio presente na Terra, encontrando-se as menores concentrações no hidrogênio gasoso, e as maiores (0,015% ou 150 ppm) em águas oceânicas. O deutério não é radioativo, e não representa um risco significativo de toxicidade. A água enriquecida em moléculas que incluem deutério no lugar de hidrogênio ¹H (prótio), denomina-se água pesada. O deutério e seus compostos empregam-se em marcações não radioativas em experiências e também em dissolventes usados em espectroscopia ¹H - RMN. A água pesada utiliza-se como moderador de nêutrons e refrigerante em reatores nucleares. O deutério é também um potencial combustível para a fusão nuclear com fins comerciais.
  
³H é conhecido como trítio e contém um próton e dois nêutrons no seu núcleo. é radioativo, desintegrando-se em ³2He+ através de uma emissão beta. Possui uma meia-vida de 12,33 anos. Pequenas quantidades de trítio encontram-se na natureza por efeito da interação dos raios cósmicos com os gases atmosféricos. Também foi libertado trítio para a realização de provas de armamento nuclear. O trítio usa-se em reações de fusão nuclear, como traçador em Geoquímica Isotópica, e em dispositivos luminosos auto-alimentados. Antes era comum empregar o trítio como radiomarcador em experiências químicas e biológicas, mas atualmente usa-se menos. 

O hidrogênio é o único elemento que possui diferentes nomes comuns para cada um de seus isótopos (naturais). Durante o começo dos estudos sobre a radioatividade, a alguns isótopos radioativos pesados foram-lhes atribuídos nomes, mas nenhum deles se continua a usar). Os símbolos D e T (em lugar de ²H e ³H) usam-se às vezes para referir-se ao deutério e ao trítio, mas o símbolo P corresponde ao fósforo e, portanto, não pode usar-se para representar o prótio. A IUPAC declara que ainda que o uso destes símbolos seja comum, ele não é aconselhado.

H2 é um produto de alguns tipos de metabolismo anaeróbico e é produzido por vários microrganismos, geralmente via reações catalisadas por enzimas contendo ferro ou níquel chamadas hidrogenases. Essas enzimas catalisam a reação redox reversível entre H2 e seus componentes, dois prótons e dois elétrons. A criação de gás hidrogênio ocorre na transferência para reduzir equivalentes produzidos durante fermentação do piruvato à água.

A separação da água, na qual a água é decomposta em seus componentes prótons, elétrons, e oxigênio, ocorre na fase clara em todos os organismos fotossintéticos. Alguns organismos — incluindo a alga Chlamydomonas reinhardtii e cianobactéria — evoluíram um passo adiante na fase escura na qual prótons e elétrons são reduzidos para formar gás H2 por hidrogenases especializadas no cloroplasto. Esforços foram feitos para modificar geneticamente as hidrogenases das cianobactérias para sintetizar o gás H2 eficientemente mesmo na presença de oxigênio. Esforços também foram tomados com algas geneticamente modificadas em um bio-reator.

O gás H2 é produzido em laboratórios de química e biologia, muitas vezes como sub-produto da desidrogenação de substratos insaturados; e na natureza como meio de expelir equivalentes redutores em reações bioquímicas.

No laboratório, o gás H2 é normalmente preparado pela reação de ácidos com metais tais, como o zinco, por meio do aparelho de Kipp.

Zn + 2 H+ → Zn2+ + H2

O alumínio também pode produzir H2 após tratamento com bases:

2 Al + 6 H2O + 2 OH- → 2 Al(OH)4- + 3 H2

A electrólise da água é um método simples de produzir hidrogênio. Uma corrente elétrica de baixa voltagem corre através da água, e oxigênio gasoso forma-se no ânodo enquanto que hidrogênio gasoso forma-se no cátodo. Tipicamente, o cátodo é feito de platina ou outro metal inerte (geralmente platina ou grafite) quando se produz hidrogênio para armazenamento. Se, contudo, o gás destina-se a ser queimado no local, é desejável haver oxigênio para assistir à combustão, e então ambos os eléctrodos podem ser feitos de metais inertes (eletrodos de ferro devem ser evitados, uma vez que eles consumiriam oxigênio ao sofrerem oxidação). A eficiência máxima teórica (eletricidade usada versus valor energético de hidrogênio produzido) está entre 80 e 94%.

2H2O(aq) → 2H2(g) + O2(g)

Em 2007, descobriu-se que uma liga de alumínio e gálio em forma de pastilhas adicionada a água podia ser usada para gerar hidrogênio. O processo também produz alumina, mas o gálio, que previne a formação de uma película de óxido nas pastilhas, pode ser reutilizado. Isto tem potenciais implicações importantes para a economia baseada no hidrogênio, uma vez que ele pode ser produzido no local e não precisa de ser transportado.

O hidrogênio pode ser preparado por meio de vários processos mas, economicamente, o mais importante envolve a remoção de hidrogênio de hidrocarbonetos. Hidrogênio comercial produzido em massa é normalmente produzido pela reformação catalítica de gás natural. A altas temperaturas (700-1100 °C), vapor de água reage com metano para produzir monóxido de carbono e H2.

CH4 + H2O → CO + 3 H2

Esta reação é favorecida a baixas pressões mas é no entanto conduzida a altas pressões (20 atm) uma vez que H2 a altas pressões é o produto melhor comercializado. A mistura produzida é conhecida como "gás de síntese" porque é muitas vezes usado diretamente para a produção de metanol e compostos relacionados. Outros hidrocarbonetos além do metano podem ser usados para produzir gás de síntese com proporção de produtos variáveis. Uma das muitas complicações para esta tecnologia altamente optimizada é a formação de carbono:

CH4 → C + 2 H2

Por consequência, a reformação catalítica faz-se tipicamente com excesso de H2O. Hidrogênio adicional pode ser recuperado do vapor usando monóxido de carbono através da reação de mudança do vapor de água, especialmente com um catalisador de óxido de ferro. Esta reação é também uma fonte industrial comum de dióxido de carbono:

CO + H2O → CO2 + H2

Outros métodos importantes para a produção de H2 incluindo oxidação parcial de hidrocarbonetos:

2 CH4 + O2 → 2 CO + 4 H2

e a reacção de carvão, que pode servir como prelúdio para a "reacção de mudança" descrito acima

C + H2O → CO + H2

Hidrogênio é por vezes produzido e consumido pelo mesmo processo industrial, sem ser separado. No processo de Haber para a produção de amoníaco, é gerado hidrogênio a partir de gás natural. Electrólise de salmoura para produzir cloro também produz hidrogênio como produto secundário.

Alguns laboratórios (incluindo França, Alemanha, Grécia, Japão e os EUA) estão a desenvolver métodos termoquímicos para produzir hidrogênio a partir de energia solar e água.

Grandes quantidades de H2 são necessárias nas indústrias de petróleo e química. A maior aplicação de H2 é para o processamento ("aprimoramento") de combustíveis fósseis, e na produção de amoníaco. Os principais consumidores de H2 em uma fábrica petroquímica incluem hidro desalquilação, hidrodessulfurização, e hidrocraqueamento. H2 também possui diversos outros usos importantes. H2 é utilizado como um agente hidrogenizante, particularmente no aumento do nível de saturação de gorduras insaturadas e óleos (encontrado em itens como margarina), e na produção de metanol. É semelhantemente a fonte de hidrogênio na manufatura de ácido clorídrico. H2 também é usado como um agente redutor de minérios metálicos.

Além de seu uso como um reagente, o H2 possui amplas aplicações na física e engenharia. É utilizado como um gás de proteção nos métodos de soldagem como soldagem de hidrogênio atômico. H2 é usado como cooler de geradores em usinas, por que tem a maior condutividade térmica de qualquer gás. H2 líquido é usado em pesquisas criogênicas, incluindo estudos de supercondutividade. Uma vez que o H2 é mais leve que o ar, tendo um pouco mais do que 1/15 da densidade do ar, foi certa vez vastamente usado como um gás de levantamento em balões e dirigíveis.

Em aplicações mais recentes, o hidrogênio é utilizado puro ou misturado com nitrogênio (às vezes chamado de forming gás como um gás rastreador para detectar vazamentos. Aplicações podem ser encontradas nas indústrias automotiva, química, de geração de energia, aeroespacial, e de telecomunicações. Hidrogênio é um aditivo alimentar autorizado (E 949) que permite o teste de vazamento de embalagens, entre outras propriedades antioxidantes.

Os isótopos mais raros do hidrogênio também possuem aplicações específicas para cada um. Deutério (hidrogênio-2) é usado em aplicações de fissão nuclear como um moderador para nêutrons lentos, e nas reações de fusão nuclear. Compostos de deutério possuem aplicações em química e biologia nos estudos da reação dos efeitos de isótopos. Trítio (hidrogênio-3), produzido em reatores nucleares, é utilizado na produção de bombas de hidrogênio, como um selo isotópico nas ciências biológicas, e como uma fonte de radiação em pinturas luminosas.

A temperatura de equilíbrio do hidrogênio em ponto triplo é um ponto fixo definido na escala de temperatura ITS-90 à 13.8033 kelvins.

Hidrogênio não é um recurso de energia, exceto no contexto hipotético das usinas comerciais de fusão nuclear usando deutério ou trítio, uma tecnologia atualmente longe de desenvolvimento. A energia do Sol origina-se da fusão nuclear de hidrogênio, mas este processo é difícil de alcançar controlavelmente na Terra. Hidrogênio elementar de fontes solares, biológicas ou elétricas requerem mais energia para criar do que é obtida ao queimá-lo, então, nestes casos, o hidrogênio funciona como um portador de energia, como uma bateria. Ele pode ser obtido de fontes fósseis (como metano), mas estas fontes são insustentáveis.

A densidade de energia por unidade volume de ambos hidrogênio líquido e gás de hidrogênio comprimido em qualquer pressão praticável é significantemente menor do que aquela de fontes tradicionais de combustível, apesar da densidade de energia por unidade massa de combustível é mais alta. Todavia, o hidrogênio elementar tem sido amplamente discutido no contexto da energia, como um possível portador de energia futuro em uma grande escala da economia. Por exemplo, CO2 sequestramento seguido de captura e armazenamento de carbono poderia ser conduzido ao ponto da produção de H2 a partir de combustíveis fósseis. O hidrogênio usado no transporte queimaria relativamente limpo, com algumas emissões de NOx, porém sem emissões de carbono. Entretanto, os custos de infraestrutura associados com a conversão total a uma economia de hidrogênio seria substancial.

Hidrogênio é empregado para saturar ligações quebradas de silício amorfo e carbono amorfo que ajudam a estabilizar propriedades materiais. É também um potencial doador de elétron em vários materiais óxidos, incluindo ZnO, SnO2, CdO, MgO, ZrO2, HfO2, La2O3, Y2O3, TiO2, SrTiO3, LaAlO3, SiO2, Al2O3, ZrSiO4, HfSiO4, e SrZrO3.

O hidrogênio gera vários perigos à segurança humana, de potenciais detonações e incêndios quando misturado com o ar a ser um asfixiante em sua forma pura, livre de oxigênio. Em adição, hidrogênio líquido é um criogênico e apresenta perigos (como congelamento) associados a líquidos muito gelados. O elemento dissolve-se em alguns metais, e, além de vazar, pode ter efeitos adversos neles, como a fragilização por hidrogênio. O vazamento de gás hidrogênio no ar externo pode espontaneamente entrar em combustão. Além disso, o fogo de hidrogênio, enquanto sendo extremamente quente, é quase invisível, e portanto pode levar a queimaduras acidentais.

Até mesmo interpretar os dados do hidrogênio (incluindo dados para a segurança) é confundido por diversos fenômenos. Muitas propriedades físicas e químicas do hidrogênio dependem da taxa de para-hidrogênio/orto-hidrogênio (geralmente levam-se dias ou semanas em uma dada temperatura para alcançar a taxa de equilíbrio, pelo qual os resultados usualmente aparecem. os parâmetros de detonação do hidrogênio, como a pressão e temperatura críticas de fundição, dependem muito da geometria do contentor.
Sun 2